کاتالیزگرها

چگونگی انجام یک واکنش شیمیایی

برای اینکه واکنش شیمیایی رخ دهد، باید پیوندهای بین اتمها و مولکولها شکسته شوند و به نحو دیگری تشکیل شوند. از آنجا که این پیوندها معمولا قوی هستند، اغلب برای شروع یک واکنش انرژی لازم است. این انرژی معمولا به شکل گرما است. مواد جدید (محصولات واکنش) خواص متفاوت با مواد اولیه (واکنش دهنده ها) دارند. واکنشهای شیمیایی فقط در آزمایشگاه رخ نمی‌دهند. این واکنشها دائما در اطراف ما در حال وقوع اند، مانند زنگ زدن اتومبیلها و پخته شدن غذا.

انواع واکنشهای شیمیایی

بعضی از واکنشهای شیمیایی بسیار سریع، یعنی ظرف چند ثانیه رخ می‌دهند. بعضی دیگر از واکنشها بسیار کند هستند و تا هزاران سال به طول می‌انجامند (فساد یک جسد مومیایی شده باستانی نمونه ای از واکنشهای بسیار کند است).

نحوه انجام واکنش

برای اینکه یک واکنش شیمیایی رخ دهد، باید مواد واکنش‌دهنده با هم تماس یابند تا محصولات جدیدی را تشکیل دهند. هر چیزی که تماس بین ذرات واکنش‌دهنده را افزایش دهد، سرعت واکنش را زیاد می‌کند. این کار را به چند طریق می‌توان انجام داد:

  1. با افزایش غلظت واکنش‌دهنده‌ها ، بطوری که ذرات بیشتری وجود داشته باشد. به این ترتیب ذرات به دفعات بیشتری به هم برخورد می‌کنند و بنابر این سریعتر واکنش می‌کنند و محصولات واکنش را تشکیل می‌دهند.
  2. با افزایش فشار درون ظرف واکنش ، بطوری که ذرات به هم فشرده شوند و در نتیجه بیشتر به هم برخورد کنند.
  3. با افزایش دمایی که واکنش در آن رخ می‌دهد. این کار به ذرات انرژی بیشتری می‌دهد، در نتیجه سریعتر حرکت می‌کنند و به دفعات بیشتری برخورد می‌کنند.
  4. با افزایش مساحت رویه واکنش‌دهنده‌ها با شکستن فیزیکی آنها. این کار فرصت بیشتری را برای تماس و واکنش به واکنش‌دهنده‌ها می‌دهد.

استفاده از کاتالیزور

راه دیگری برای تغییر سرعت یک واکنش استفاده از کاتالیزور است. کاتالیزور ماده ای است که سرعت یک واکنش را تغییر می‌دهد، اما خود آن در پایان واکنش از نظر شیمیایی بدون تغییر می‌ماند. کاتالیزگرها معمولا واکنش را سریعتر می‌کنند. این مواد این کار را با فراهم کردن مسیر دیگری برای واکنش انجام می‌دهند، مسیری که نیاز به انرژی کمتری دارد.

به دلیل پائین آمدن «سد» انرژی ذرات بیشتری واکنش می‌کنند و واکنش سریعتر انجام می‌شود. کاتالیزگرها در تولید صنعتی مواد مختلف، مانند بنزین ، مارگارین ، آمونیاک اهمیت زیادی دارند. اکثر کاتالیزگرهای صنعتی فلز هستند و به شکل دانه های فلزاند. بعضی از کاتالیزگرها برای کند کردن واکنشها به کار می‌روند و بازدارنده نامیده می‌شوند.

اکسایش و کاهش

اکسایش و کاهش فرایندهایی هستند که در بعضی واکنشهای شیمیایی رخ می‌دهند: وقتی که اکسیژن به ماده ای اضافه می‌شود، وقتی که ماده ای هیدروژن از دست می‌دهد و وقتی که ماده ای الکترون از دست می‌دهد.

کاهش ، عکس اکسایش است. این فرایند در سه حالت رخ می‌دهد: وقتی که ماده ای اکسیژن از دست می‌دهد، وقتی که ماده ای هیدروژن بدست می‌آورد و وقتی که مادهای الکترون بدست می آورد.

به عنوان مثال وقتی که منیزیم در هوا سوزانده می‌شود، این فلز با به دست آوردن اکسیژن و اکسیده شدن تبدیل به خاکستر می‌شود. این خاکستر اکسید منیزیم است.

واکنشهای اکسایش و کاهش

اکسایش و کاهش همیشه همراه با هم در یک واکنش رخ می‌دهند.در این صورت، واکنش را واکنش اکسایش- کاهش می‌نامند. بعضی از واکنشهای اکسایش- کاهش در صنعت مفید است. مثلا استخراج آهن از سنگ معدن آن با ترکیب کردن سنگ معدن با منواکسید کربن در کوره بلند آهن انجام می‌شود. در این واکنش سنگ معدن آهن اکسیژن از دست می‌دهد و آهن تشکیل می‌شود و منواکسید کربن ، اکسیژن بدست می‌آورد و تبدیل به دی‌اکسید کربن می‌شود.

شیمی فضایی پلی-۱-آلکن‌ها

بسپارش آلکان‌های شاخه‌دار از لحاظ فضایی می‌تواند به روش‌های متنوعی صورت بگیرد. شیمی فضایی در زنجیرهٔ بسپاری می‌تواند به صورت تک‌آرایش , هم‌آرایش, یا بی‌آرایش باشد.

بسپارهای تک‌آرایش زمانی وجود دارند که تمامی مراکز کایرال از شیمی فضایی یکسانی برخوردار باشند. مراکز بسپارهای هم‌آرایش با حالت فضایی بسپار تغییر می‌کنند. بسپارهای بی‌آرایش مراکز کایرال معمولی ندارند. کاتالیزگرهای زیگلر-ناتا به دلیل کارایی بسیار خوب‌شان در تهیه بسپارهای ایزوتکتیک ( در جایی که بسپارش با رادیکال آزاد منتج به اتکتیک بسپارها می‌شود) نقشی غیرقابل انکاری دارند. سیستم‌های کاتالیزی مانند VCl4 بسپارهای هم‌آرایش را تولید کرده و با خط سیری متفاوت با سیستم‌های TiCl4 را طی می‌کنند. اولین بسپار سنتز شده با این کاتالیزگر پلی‌اتیلن بود که محصول آن هیچ مرکز فعال نوری نداشت. ناتا از این سیستم کاتالیزی استفاده کرد و به پلیمری کردن ۱-آلکن‌ها نظیر پروپیلن روی آورد تا پلی‌پروپیلن ایزوتکتیک تولید کند.

 تهیهٔ کاتالیزگرها

کاتالیزگر زیگلر و ناتا از اثر بلورهای α-TiCl3 با [AlCl(C2H5)2]2 تولید می‌شود . فلز تیتانیوم یک ساختار بلورین که در آن تمامی یون‌های تیتانیوم با ۶ یون کلر در یک ساختار هشت‌وجهی متبلور می‌شوند را تشکیل می‌دهند . در گوشه‌های بلور، در واقع کلرهای بلااستفاده‌ای در مکان‌هایی که فلز پیوند بازدارد, وجود دارند. یکی از این محل‌های خالی می‌تواند با دادن الکترون‌های یکی از گروه‌های CH2 در AlCl(Et)2 پر شود. آخرین سایت خالی نیز با یک سیستم پای دهنده (مانند آلکن) پر می‌شود. لیگاندهای فلز آلکن وارد شونده را با توجه به رشد زنجیرهٔ بسپاری محدود می‌کنند تا بدین ترتیب یک ساختار فضایی خاصی را به آن تحمیل کنند.(4) در طی مراحلی که شامل جابه جایی الکترون و مهاجرت است تحت مکانیزم کاسی–آرلمان گسترش بسپار به طور فضا ویژه توضیح داده می‌شود. وارد شدن گروه آلکیل جدید به زنجیرهٔ بسپار در فلز واسطه به وقوع می‌پیوندد, و بسپار رشد کرده و پیوندی با کاتالیست آلکیل آمونیون آن چنان که در واکنش زیر می‌بینید , بر قرار می‌کند .

R2AlC2H5 + (n-1) CH2=CH2 –> R2Al(CH2CH2)nH

با حذف یک هیدروژن بتا مرحلهٔ پایانی به وقوع می پیوندد ؛ که در آن هیدروژن توسط فلز جذب شده و تشکیل پایانهٔ کربن را با ایجاد یک باند دوگانه می‌دهد. ( از طریق واکنش زیر : R2AlCH2CH2R’ –> R2AlH + CH2=CH2R’ روش معادل دیگر برای تشکیل این کاتالیزور استفاده از TiCl4 و AlEt3 است . تیتانیوم کلرید تری اتیل آلومینیوم در محلولی قرارداده می‌شوند حساس به آب و پیروفوریک نسبت به هوا .. در نتیجه کاتالیزگر باید در شرایط اتمسفر خنثی تهیه شود. سیستم کاتالیست بسیار فضاگزین تر است هنگامی که کمپلکس تیتانیوم-آلومینیم بر روی MgCl2 به منظور رسیدن به گزین پذیری بالا برای محصول پلیمری ایزوتکتیک ؛ از یک اسید لویس باید استفاده شود. برای تهیهٔ این کاتالیزگر باز لویس و منیزیم کلرید با یکدیگر آسیا شده و با محلول هپتان حاوی TiCl4 مخلوط می‌شود. و جامد حاصل براحتی با صاف کردن جدا می‌شود. سپس کاتالیست با اضافه کردن این جامد به محلول هپتانی که با آلکن مورد نظر اشباع شده اضافه می‌شود و هنگامی که AlEt3 اضافه می‌شود و کمی هم محلول را به آهستگی حرارت می‌دهیم، واکنش بسپارش آغاز می‌شود.

مکانیزم و منشا فضاگزینی

این فضا نظمی حاصل از مکانیزم گسترش بسپاری به نام Cossee-Arlman mechanism شناخته می‌شود , که در آن در مکان‌های اشغال نشده در سطح تیتانیوم کلر می‌نشیند.

ترکیبات آلی-فلزی دیگری هم فادر به ایجاد بسپارهای فضا نظم هستند مانند ترکیبات متالوسن. یکی از این ترکیبات (Cp)2TiCl2 است ؛ این ترکیب مانند بلورهای TiCl3 جایگاه اشغال نشده ندارد و در نتیجه می‌بایست با ترکیبات آلکیل آمونیوم فعال گردد. بسیار مرسوم است که از ترکیبات MAO یا متیل آلومین اکسان ([CH3AlO]n) به عنوان کمک‌کاتالیزگر استفاده شود . مانند AlEt3 , کمپلکس فلز واسطه را با با رفتار به عنوان یک اسید لویس و جذب یکی از هالیدهای (تا بدین وسیله یک جایگاه اشغال نشده که در آن آلکن به کمپلکس اضافه شود) فعال می‌کند.

فعالیت و پایان زنجیره

فعالیت به ذات ماده بستگی دارد . در جدول تناوبی برای ستون تیتانیم : تیتانیوم فعالترین به عنوان کاتالیست است و با فاصله زیاد هافنیوم و زیرکونیوم فرار دارند. البته تیتانیوم در حالت اکسیداسیونی چهار خود بسیار کاتالیست خوبی است زیرا اوربیتال d آن خالی از الکترون است , در نتیجه بدون الکترونهای d پیوند تیتانیوم – آلکن با پیوند برگشتی پایدار نمی‌گردد , در نتیجه سد انرژی برای واکنش و رشد زنجیرهٔ پلیمری کاهش یافته که این به معنای افزایش فعالیت کاتالیست است .

طول بسپار معمولاً با ثابت سرعت دو واکنش رقیب (یکی رشد زنجیره و دیگری مرحلهٔ پایانی) تعیین می‌شود. واکنش معمولاً با حذف هیدروژن بتا پایان می‌پذیرد.این دو واکنش تاثیرگذاری کاتالیزگر را در ایجاد بسپارهای با زنجیرهٔ طولانی تعیین می‌کنند .از زمان کشف کاتالیست‌های زیگلر-ناتا، محققین بر روی این دو ثابت سرعت کار کردند تا بتوانند به طور تنظیم‌پذیری سیستم‌های با جرم مولکولی بالا یا پایین را طراحی کنند. به عنوان مثال استفاده از گونه‌های زیرکونیوم به صورت متالوسن‌های نیم‌ساندویچی half-sandwich به عنوان گونه‌هایی که تشکیل بسپارهایی با جرم مولکولی پایین می‌دهند، شناخته می‌شوند (دلیل فعالیت پایین زیرکونیوم و نیز افزایش حذف بتا با تشکیل پیوند تند اثر C-Zr .) بسپارهای با جرم مولکولی بالا زمانی که از لیگاندهای حجیم در اطراف فلز واسطه استفاده شود تشکیل می‌شوند.

کاتالیزگرهای همگن زیگلر-ناتا

تلاش‌های زیادی در جهت ایجاد کاتالیست‌هایی که بتوانند به نحو تاثیرگذاری آلکن‌های شاخه‌دار را بسپاری کنند انجام شده است. همچنین تلاش هایی هم برای تولید کاتالیست‌های همگن زیگلر–ناتا که نیازی به کمک کاتالیزگر آلومینیوم نداشته باشند , انجام پذیرفته. این گونه‌ها کاتیونی بوده و در محلول لیگند فعال خود را از دست می‌دهند . یکی از این کاتالیست‌ها Cp2Zr(CH3)CH3B(C6F5)3 است . آنیون بورات تفکیک‌شده و سایت فعال خالی را برای تشکیل پیوند با آلکن, خالی می‌کند. پیشرفت‌ها در زمینهٔ ساخت آنیون‌های کوردینه شوندهٔ پیشرفته, همچنان ادامه دارد.

کاتالیزگرها و مکانیسم عملکرد و کاربرد آنها در صنایع

کاتالیزگرها موادی هستند که سرعت واکنش‌های شیمیایی را افزایش می‌هند ولی در واکنش مصرف نمی‌شوند.

کاتالیزگرها چه در کاربردهای صنعتی وچه در فرآیندهای بیولوژیکی اهمیت بسیاری دارند زیرا در واکنشهای صنعتی لازم است که سرعت واکنش به طریقی مثلاً استفاده از کاتالیزگرها افزایش داده شود تا تولید فرآورده‌های حاصل از ان از نظر اقتصادی مقرون به صرفه باشد، اگر چه می‌توان با افزایش دما سرعت واکنش را به مقدار قابل توجهی افزایش داد ولی از آن جا که افزایش دما با مصرف انرژی همراه است، چنین اقدام صرفه‌ی اقتصادی نخواهد داشت، از سوی دیگر بسیاری از مواد نسبت به گرما حساس هستند و در اثر گرما تجزیه می‌شوند به همین دلیل مناسب‌ترین راه این است که برای سرعت دادن به واکنش‌های شیمیایی از کاتالیزگر استفاده گردد.

کاتالیزگرها در فرآیندهای بیولوژیکی هم از اهمیت بسیاری برخوردار هستند. آنزیم‌ها مانند یک کاتالیزگر در کلیه اعمال زیستی نقش بسیار اساسی و ماهرانه‌ای را ایفا می‌کنند که کاتالیزگرها را می‌توانیم به یک کلید تشبیه کنیم که می‌تواند انواع قفل‌ها را با مکانیسم‌های مختلف باز کند یعنی نقشی که آنزیم‌ها در اعمال زیستی و حیاتی ایفا می‌کنند بسیار مؤثرتر از کاتالیزگرهایی است که ساخته‌ی دست بشر است در این مقاله سعی شده است که از تعریف کاتالزگر، خواص چند مکانیسم کاتالیزگرها مورد بحث و بررسی قرار گیرد و برخی از کاربردهای آن در صنعت بیان شده است نقش و اهمیت کاتالیزگرها در پالایش‌های نفت و بسیاری از سنتزها در سایه‌ی بهره‌گیری از کاتالیزگرهای خاصی با مکانیسم‌های معین انجام می‌گیرد و برخی از کاتالیزگرها نه تنها تشکیل یا شکستن پیوندها را آسان می‌کنند بلکه محصولات واکنش را هم در قالب هندسی خاصی تولید می‌کنند امیدواریم مورد توجه قرار گیرد.                           

تا اغاز قرن نوزدهم ماهیت کاتالیزگرها ناشناخته بود، سرانجام در سال 1835 میلادی، ژان یاکوب برسلیوس شیمیدان سوئدی در بررسی واکنشهای شیمیایی در طول سی سال پژوهش و بررسی یکی از خصوصیات مهم واکنشها را سرعت انجام آنها دانست زیرا واکنشهایی که در آزمایشگاه انجام می‌شود باید از سرعت کافی برخوردار باشد تا بتوان واکنشی را دنبال کرده و با مشاهده آزمایش به نتایجی دست یافت مانند هر گاه شعلة کبریت افروخته‌ای را به توده‌ای از قند تماس دهید قند گداخته می‌‌شود ولی نمی‌سوزد، برای سوزاندن قند می‌توانید مقداری خاکستر سیگار یا کمی از خاک گلدان روی آن بریزید در این صورت قند با شعله‌ی آبی خیره‌کننده‌ای همراه با صدای فش‌فش خواهد سوخت در این عمل خاکستر سیگار یا خاک گلدان کاتالیزگر است، یعنی سوختن قند در مجاورت خاکستر یا خاک انجام می‌گیرد، لیکن خاکستر یا خاک در پایان واکنش بدون تغییر شیمیایی به جا می‌ماند.

کشف کاتالیزگرهای جدید تأثیر فراوانی در صنعت داشته است و واکنشهای شیمیایی در صنعت باید نسبتاً سریع انجام شوند زیرا یک کارخانه‌دار نمی‌تواند سالها در انتظار بدست آمدن محصولی بماند که امروز بازار فروش خوبی دارد.

دانش روز افزون درباره‌ی آنزیم‌ها یعنی کاتالیزگرهای زیستی درک ما را درباره‌ی فرآیندهای زیستی دگرگون کرده است، به همین دلیل مطالعه و نحوه‌ی کاربرد آنها در بین مواد شیمیایی از اهمیت ویژه‌ای برخوردار است.

آنزیم‌ها در تنظیم سرغت واکنشهای شیمیایی که در بدن موجودات زنده انجام می‌شوند، نقش بسیار اساسی دارند. آنزیم‌ها خود ترکیبهای پیچیده‌ای هستند که از مولکولهای بسیار سنگین پروتئینی ساخته شده‌اند. تنظیم و اداره هر یک از واکنشهای زیستی به عهده‌ی آنزیم ویژه‌ای است. امروزه تخمین زده‌اند که چندین هزار آنزیم مختلف در اداره‌ی اعمال زیستی بدن انسان شرکت دارند. بسیاری از فرآیندهای زیستی، مانند گوارش در جانوران و فتوسنتز در گیاهان ضروری هستند. آنزیم‌ها نقش مهمی در لخته شدن خون و انقباض بافتهای ماهیچه‌ای دارند، کاتالیزگرها حتی سبب تغییر رنگ برگ‌ها در پائیز و تبدیل گلولز به اتیل الکل (اتانول) مطابق با واکنش زیر می‌شوند:

نخستین بار لویی پاستور در دهة سال 1850 با پژوهشهای خود درباره‌ی تخمیر، کاتالیزگرهای زیستی را مورد مطالعه قرار داد، پاستور نشان داد که ارگانیسم ذره‌بینی مخمر سبب تبدیل گلولز به اتانول و کربن دی‌اکسید می‌شود که بعدها دانشمند آلمانی ادوارد بوخنر در سال 1897 نشان داد که این تخمیر توسط ماده‌ی موجود در عصارة مخمر حاصل می‌شود و این ماده را آنزیم نامیدند.

بعدها مواد دیگری کشف شدند که می‌توانستند به عنوان کاتالیزگر در فرآیندهای زیستی شرکت کنند سی سال پس از کشف بوخنر نخستین آنزیم به حالت بلوری خالص بدست آمد.

هر آنزیم معمولاً می‌تواند تنها در یک واکنش خاص به عنوان کاتالیزگر شرکت کند، بنابراین سلولهای زنده صدها انزیم مختلف را تولید می‌کنند تا این آنزیم‌ها در صدها واکنش شیمیایی مختلف، که ضرورت زنده ماندن سلولها هستند، به عنوان کاتالزگر شرکت کنند.

آنزیم‌ها کاتالیزگرهایی با کارآیی شگفت‌آوری هستند مقیاسی از این کارایی، عدد تبدیل است. عدد تبدیل تعداد مولکولهایی از ماده اولیه است که یک مولکول آنزیم در هر واحد زمانی به فرآورده‌های تبدیل می‌کند. عدد تبدیل آنزیم مالتوز ، که در تمام ارگانیسم‌های حیوانی یافت می‌شود در واکنش ئیدرولیز قند مالتوز است که در این واکنش گلولز تشکیل می‌شود.

سرعت انجام همه‌ی واکنشهای شیمیایی یکسان نمی‌باشد مثلاً بعضی از واکنشها سریع هستند مانند اگر مقدار کمی از سدیم را در آب بیاندازیم به سرعت با اکسیژن آب واکنش داده و محلول قلیا تولید می‌کند. برخی از واکنشها از سرعت بسیار کمی برخوردار هستند مانند مس در شرایط عادی به آرامی با اکسیژن هوا ترکیب می‌شود، از این رو ذخایری از این عنصر در سطح زمین یافت می‌شود، واکنشهای دیگری نیز هستند که سرعت متوسطی دارند مانند واکنش آهن با اکسیژن هوا که در شرایط عادی مدت زمان متوسطی طول می‌کشد تا آهن زنگ بزند البته واکنشهای فوق را می‌توان تحت شرایط سریع یا از سرعت آن کاست بنابراین عواملی مانند دما، غلظت، کاتالیزگر واکنش‌دهنده‌ها سطح تماس، ماهیت مواد اولیه کاتالیزگر به میزان قابل توجهی روی سرعت واکنش مؤثر خواهد بود.

برای مثال برسلیوس شرح داد که چگونه اسیدها، تبدیل نشاسته به قند را سرعت می‌دهند و چگونه در مجاورت فلز پلاتین، واکنشها بین گازها با سرعت بیشتر صورت می‌گیرد.

در سال 1902 ویلهلم استوالد شیمیدان آلمانی کاتالیزگر را ماده‌ای تعریف کرد که سرعت واکنشهای شیمیایی را تغییر می‌دهد و در پایان واکنش بدون تغییر، باقی می‌ماند و هم‌چنین توانست خصوصیات ویژه‌ای کاتالیزگرها را بیان نماید.

برخی از خصوصیات ویژه‌ی کاتالیزگرها

کاتالیزگرها در فعالیت خود ویژگی‌های کاملاً خاصی دارند در بعضی از موارد یک کاتالیزگر معین موجب سنتز نوعی محصولات خاص از بعضی مواد می‌شود حال آنکه کاتالیزگر دیگر موجب سنتز محصولات کاملاً متفاوت دیگری از همان مواد می‌شود و امکان وقوع هر دو واکنش از لحاظ ترمودینامیکی میسر است مانند مونوکسیدکربن و هیدروژن می‌توانند با توجه به کاتالیزگر به کار رفته و شرایط واکنش فرآورده‌های بسیار گوناگونی را تولید کنند. اگر یک کاتالیزگر کبالت یا نیکل در واکنش مونوکسیدکربن با ئیدروژن به کار رود، مخلوطی از ئیدروکربنها به دست می‌آید ولی اگر در همین واکنش مخلوطی از اکسیدهای روی و کروم به عنوان کاتالیزگر مصرف شود از 2Co و 2 H متانول تولید می‌‌شود یعنی:

ساده‌ترین و ارزان‌ترین راه برای سرعت بخشیدن به یک واکنش یافتن کاتالیزگر مناسبی است که اکثراً به صورت جامدات ریزی می‌باشند البته انتخاب کاتالیزگر برای هر واکنش بیشتر یک هنر است تا علم، برای انتخاب کاتالیزگر، مواد مختلفی آزمایش می‌شود و مؤثرترین آنها انتخاب می‌شود.

اثر کاتالیزگرها در واکنشهای تعادلی

بنا به قوانین ترمودینامیک، یک سیستم در حال تعادل با اضافه کردن کاتالیزگر تغییر نمی‌کند. کاتالیزگر بر سرعت رسیدن سیستم به حالت نهایی تعادل می‌افزاید ولی نمی‌تواند مقدار ثابت تعادل را تغییر دهد زیرا در شرایط تعادل یک کاتالیزگر همان اثر را در افزودن سرعت واکنش معکوس (برگشتی) دارد که در واکنش مستقیم (رفت) نیز اعمال می‌کند.

نقش کاتالیزگری

فلزات واسطه به علت قدرت جذب سطحی زیاد، تمایل به تشکیل ترکیب‌های درون شبکه‌ای و یا کمپلسکهای فعال و سهولت شرکت در واکنش‌های اکسایش- کاهش می‌توانند بسیاری از مواد را به صورت ترکیبهای حد واسطه مناسبی که به آسانی به صورت مواد مورد نظر در می‌آیند، تبدیل کنند از این رو نقش کاتالیزگر را در بسیاری از واکنش‌ها می‌توانند ایفا کنند، به ویژه به صورت ترکیبهای آلی- فلزی مانند نقش کاتالیزگری نیکل در واکنشهای هیدروژن‌دار کردن و یا نقش کبالت در تبدیل آلکن‌ها با آلدئیدها در مجاورت Co و 2H

 کاتالیزگر و انرژی فعالسازی

کاتالیزگر نمی‌تواند موجب وقوع واکنشهایی شود که از نظر ترمودینامیک امکان وقوع ندارند بعلاوه صرفاً حضور یک کاتالیزگر نیست که (احتمالاً به عنوان یک بخش فعال کننده) موجب اثر و سرعت واکنش می‌شود. در یک واکنش کاتالیز شده، کاتالیزگر در مراحلی از انجام واکنش عملاً دخالت می‌کند و در مراحل بعدی بار دیگر به همان حالت اولیه برمی‌گردد و این عمل بارها تکرار می‌شود بدون آنکه کاتالیزگر دچار تغییر دائمی شود.

کار کاتالیزگر آن است که راه تازه‌ای برای پیشرفت واکنش می‌گشاید بدین‌ترتیب مکانیسم واکنش کاتالیزی با واکنش بدون کاتالیزگر تفاوت دارد و انرژی فعال‌سازی مسیری که واکنش به کمک کاتالیزگر طی می‌کند کمتر از انرژی فعال‌سازی راهی است که همان واکنش بدون کاتالیزگر می‌پیماید و این واقعیتی است که علت سریع‌تر شدن واکنش را توجیه می‌کند.

پیدا کردن کاتالیزگر برای یک واکنش کمی شبیه پیدا کردن راهی از میان یک رشته کوه است و هدف این است که گذشتن از کوه را از هر دو طرف آسانتر کند. محل نسبی درّه‌ها در اطراف کوه بدون تغییر می‌ماند و در اینجا نیز مانند گذرگاههای کوهستانی اغلب پیدا کردن کاتالیزگر مناسب آسان نیست.

بنابراین واکنش در مجاورت کاتالیزگر از مسیری که سربالایی انرژی در آن کوتاهتر است انجام می‌گیرد، بنابراین کار اصلی کاتالیزگر کاهش انرژی فعالسازی کلی واکنش است. همچنین زمانی که کاتالیزگر مورد استفاده قرار می‌گیرد مولکولهای نسبتاً بیشتری انرژی لازم برای یک برخورد مؤثر را پیدا می‌کنند و بدین‌ترتیب عده کل برخوردهای مؤثر در واحد زمان که موجب انجام واکنش می‌شوند، افزایش می‌یابند. با ملاحظه شکل زیر به دو نقطه دیگر نیز می‌توان پی برد نخست آنکه  واکنش کاتالیزی با واکنش بدون کاتالیزگر یکسان است و دیگر آنکه انرژی فعالسازی واکنش معکوس یعنی ، نیز به هنگام استفاده از کاتالیزگر کاهش می‌یابد و مقدار کاهش آن درست برابر با کم شدن انرژی فعالسازی واکنش کاتالیزی اصلی، ، است این بدان معنی است که کاتالیزگر بر یک واکنش و واکنش کردن شناخته شده است (شکل صفحه 4) ذیلاً چند نمونه از مکانیزم واکنش‌های متداول ارائه می‌شود.

الف) کاتالیزگر همگن

  1. I) برای مثال تجزیه پراکسید هیدروژن را در نظر می‌گیریم.

واکنش مستقیم بسیار آهسته روی می‌دهد، محلول آبی  که از داروخانه خریداری می‌شود به مدت چند ماه پایدار است ولی اگر به محلول، یون یدید اضافه شود واکنش بلافاصله روی می‌دهد و حبابهای گاز اکسیژن را که در محلول تشکیل می‌شود می‌توان مشاهده نمود. واکنش در حضور یونهای یدید یک مسیر دو مرحله‌ای را طی می‌کند.

باید به این نکته توجه نمود که نتیجه نهایی مانند نتیجة نهایی واکنش مستقیم است، یون یدید یک کاتالیزگر حقیقی است و در واکنش مصرف نمی‌شود. بازاء هر یون یدید مصرف شده در مرحله اول یک یون یدید در مرحله دوم تولید می‌شود.

انرژی فعالسازی این مسیر دو مرحله‌ای خیلی کوچکتر از انرژی فعالسازی واکنش کاتالیزگر نشده است.

  1. II) نمونة دیگر از کاتالیزگر همگن تجزیه اوزون در حضور است.
کاتالیزگرواکنش شیمیایی
Comments (0)
Add Comment