كوره هاي القايي

641

كوره هاي القايي در مقايسه با كوره هاي سوخت فسيلي داراي مزاياي فراواني از جمله دقت بيشتر ،  تميزي و تلفات گرمايي كمتر و … است . همچنين در كوره هايي كه در آنها از روشهاي ديگر ، غير القاء استفاده مي شود ، اندازه كوره بسيار بزرگ بوده و در زمان راه اندازي و خاموش كردن آنها طولاني است . عبور جريان از يك سيم پيچ و استفاده از ميدان مغناطيسي براي ايجاد جريان در هسته سيم پيچ ، اساس كار كوره هاي القايي را تشكيل مي دهد . در اين كوره ها از حرارت ايجاد شده توسط تلفات فوكو و هيسترزيس براي ذوب فلزات يا هرگونه عمليات حرارتي استفاده مي شود .    نخستين كوره القايي كه مورد بهره برداري قرار گرفت از شبكه اصلي قدرت تغذيه ميشد و هيچگونه تبديل فركانسي صورت نمي گرفت . با توجه به اينكه افزايش فركانس تغذيه كوره موجب كاهش ابعاد آن و بالا رفتن توان (تلفات) مي شود ، براي رسيدن به اين هدف ، در ابتدا منابع تغذيه موتور ژنراتوري مورد استفاده واقع گرديد . هر چند با اين منابع مي توان فركانس را تا حدودي بالا برد ، ولي محدوديت فركانس و عدم قابليت تغيير آن و در نهايت عدم تطبيق سيستم تغذيه با كوره ، دو عيب اساسي اين سيستمها به شمار ميرفت . با توجه به اين معايب ورود عناصر نيمه هادي به حيطه صنعت موجب گرديد منابع تغذيه استاتيك جايگزين منابع قبلي شوند .   در سال 1831 ميلادي مايكل فارادي (Faraday) با ارائه اين مطلب كه اگر از سيم پيچ اوليه اي جريان متغيري عبور كند ، در سيم پيچ ثانويه مجاورش نيز جريان القاء ميشود ، تئوري گرمايش القايي را بنا نهاد . علت اصلي اين پديده القاء ، تغييرات شار در مدار بسته ثانويه است كه از جريان متناوب اوليه ناشي ميشود . نزديك به يكصد سال اين اصل در موتورها، ژنراتورها ، ترانسفورماتور ها ، وسايل ارتباط راديويي و … بكار گرفته مي شد و هر اثر گرمايي در مدارهاي مغناطيسي به عنوان يك عنصر نا مطلوب شناخته مي شد . در راستاي مقابله با اثرات حرارتي در مدارهاي مغناطيسي و الكتريكي از سوي مهندسين گامهاي موثري برداشته شد . آنها توانستند با مورق نمودن هستهِ مغناطيسي موتورها و ترانسفورماتورها ، جريان فوكو(Eddy Current) را كه عامل تلفات حرارتي بود مينيمم نمايند .   به دنبال آزمايشات فارادي ، قوانين متعددي پيشنهاد شد . قوانين لنز (Lenz) و نيومن (Neuman) نشان دادند كه جريان القاء‌ شده با شار القايي مخالفت كرده و به طور مستقيم با فركتنس متناسب مي باشد . فوكو (Focault) در سال 1863 در مقاله اي تحت عنوان “القاء جريان در هسته” (The Induction Of Current in Cores) كه توسط هويسايد (Heviside) منتشر گرديد نظريه اي راجع به جريان فوكو ارائه داد و در رابطه با انتقال انرژي از يك كويل به يك هسته توپر بحث نمود . علاوه بر افراد فوق ، تامسون (Thomson) نيز در ارائه نظريه گرمايش از طريق القاء سهم بسزايي داشت .    در اواخر قرن نوزدهم استفاده از تلفات فوكو و هيسترزيس به عنوان منبع گرمايش القائي از طرف مهندسين مطرح شد . همچنين در اوايل قرن اخير در كشورهاي فرانسه ، سوئد و ايتاليا بر اساس استفاده از خازنهاي جبران كننده توان راكتيو پيشنهاداتي براي كوره هاي القايي بدون هسته ارائه شد . در اين پيشنهادات بيشتر ذوب فلزات در فركانسهاي مياني مورد نظر بود .   دكتر نورث روپ (Northrup) ايده كوره با فركانس مياني را براي موارد صنعتي گسترش داد . در روزهاي نخستين ، بر اثر نبود امكانات از جمله خازنهاي با ظرفيت كافي و قابل اطمينان ، توسعه و پيشرفت متوقف شد . بعدها در سال 1927 كمپاني كوره هاي الكتريكي (Electrical Furnace CO. [EFCO.]) نخستين كوره الكتريكي با فركانس مياني را در شفيلد انگلستان و به منظور آهنگري و گرمادهي موضعي فلزات جهت اتصال به يكديگر ، نصب كرد . بعد از اين ، تعداد و اندازه اين كوره ها رو به افزايش گذاشته است . لازم به ذكر است كه مزيتهاي ديگر كوره هاي القايي همچون دقت زياد براي گرم كردن تا عمق مورد نظر و حرارت دادن نواحي سطحي در طي پيشرفتهاي بعدي ( در سالهاي جنگ جهاني دوم ) بيشتر آشكار شد . در گرمايش القايي عدم نياز به منبع خارجي گرم كننده ، تلفات گرمايي كمتر شده و تميزي شرايط كار تامين ميگردد . در اين روش همچنين نيازي به تماس فيزيكي بار و كويل نبوده و علاوه بر اين چگالي توان بالا در مدت زمان گرمايش كم به آساني قابل دسترس مي باشد .   در ابتدا كوره هاي القايي مستقيماً از شبكه قدرت تغذيه مي شدند كه بنوبه خود گام موفقي در استفاده از توان الكتريكي جهت عمليات حرارتي بحساب ميآمد .   از آنجائيكه تلفات فوكو و هيسترزيس با فركانس نسبت مستقيم دارند و اينكه ابعاد كويل كوره با بالا رفتن فركانس كاهش مي يابد ، مهندسين به فكر تغذيه كوره در فركانسهاي بالاتر از فركانس شبكه قدرت افتادند . اولين قدم در اين راه استفاده از فركانسهاي دو برابر و سه برابر كه از هارمونيكهاي دوم و سوم بدست مي آمدند ، بود .اين هارمونيكها بر خلاف طبيعت مخرب خود در اين نوع كاربرد سودمند تشخيص داده شدند . پائين بودن راندمان در استفاده از هارمونيكهاي فوق موجب گرديد طراحان روش ديگري را مورد استفاده قرار دهند در اين مرحله سيستم موتورـژنراتور توسعه يافت كه با استفاده از اين سيستم توانستند فركانس تغذيه را تا صدها هرتز افزايش دهند . در كوره هاي القايي افزايش فركانس باعث كاهش عمق نفوذ جريان القايي ميگردد لذا در عمليات حرارتي سطحي كه سختكاري سطح فلز ، مورد نظر مي باشد از كوره هاي القايي با فركانس بالا استفاده مي شود . با ورود عناصر نيمه هادي مانند تريستورها ، ترانزيستورها و موسفت ها به حيطه صنعت محدوديت فركانس و عدم تغيير آن ، در تغذيه

كوره ها مرتفع شد .  

از لحاظ سيستم قدرت ميتوان سيستمهاي القايي را به چهار دسته اساسي تقسيم نمود :

الف ) سيستمهاي منبع (Supply Systems)در اين سيستمها كه فركانس كار آنها بين 50 تا 60 هرتز و 150 تا 540 هرتز مي باشد احتياجي به تبديل فركانس نيست و با توجه به فركانس كار ،‌ عمق نفوذ جريان زياد بوده و حدود 10 تا 100 ميليمتر مي باشد . همچنين مقدار توان لازم تا حدود چندين صد مگا وات نيز ميرسد .

ب ) سيستمهاي موتورـژنراتور (Motor-Generator Systems)

فركانس اين سيستمها از 500 هرتز تا 10 كيلو هرتز مي باشد . در اين سيستمها تبديل فركانس لازم بوده و اين عمل بوسيله ژنراتورهاي كوپل شده با موتورهاي القايي صورت مي پذيرد . همچنين در اين سيستمها توان به وسيله ماشينهاي 500 كيلو وات تامين ميگردد و براي بدست آوردن توانهاي بالاتر ،‌ از سري كردن ماشينها استفاده ميشود . عمق نفوذ در اين سيستمها به خاطر بالاتر بودن فركانس نسبت به سيستمها منبع ، كمتر بوده و در حدود 1 تا  10 ميليمتر است .

ج ) سيستمهاي مبدل نيمه هادي (Solid-State Converter Systems)

در اين سيستمها فركانس در محدوده HZ 500 تا  KHZ100 بوده و تبديل فركانس به طرق گوناگوني صورت ميپذيرد . در اين سيستمها از سوئيچهاي نيمه هادي استفاده ميشود و توان مبدل بستگي به نوع كاربرد آن تا حدود MW 2 ميتواند برسد .

د ) سيستمهاي فركانس راديويي (Radio-Frequency System) فركانس كار در اين سيستم در محدوده KHZ 100 تا MHZ 10 مي باشد . از اين سيستمها براي عمق نفوذ جريان بسيار سطحي، در حدود  1/0 تا 2 ميليمتر استفاده مي گردد و در آن از روش گرمايي متمركز با سرعت توليد بالا استفاده ميگردد

تكنولوژي كورة القايي يك تكنولوژي استراتژيك و پركاربرد است كه از جمله در ذوب فلزات با استفاده از انرژي الكتريكي كاربرد دارد.زيربناي صنايع سنگين هر كشور، صنايع ذوب فلزات است. زيربناي صنايع ذوب نيز صنايع كوره سازي است.لذا از اينجا اهميت صنايع كوره­سازي بوضوح روشن مي گردد.

در گذشته بيشتر از كوره هاي سوخت فسيلي براي ذوب فلزات استفاده مي شد . آلودگي محيط زيست، راندمان پايين، سروصداي زياد، عدم يكنواختي مذاب، عدم توانايي ذوب فلزات ديرگداز و مسائلي از اين قبيل، مشكلاتي بود كه اين كوره ها به همراه داشتند.
در چند دهة اخير توجه متخصصين و دست
اندركاران كوره سازي به استفاده از انرژي الكتريكيدر اين زمينه جلب شد و نسل جديدي از كوره هاي الكتريكي بوجود آمد كه از اين ميان به دو مدل از كوره هاي ذوب مي توان اشاره نمود:
1-كوره­هاي
قوس الكتريك
2- كوره­هاي القايي

كوره هاي قوس الكتريك براي ذوب فولاد و به منظور فولادسازي مورد استفاده قرار مي­گيرد كه فعلاً بحث دربارة آن مورد نظر نيست. اما دربارة كوره هاي القايي و يا به عبارتي تكنولوژي گرمايش القايي، زمينة بحث بسيار گسترده و عميق است كه مختصري درباره آن صحبت مي­كنيم:

تكنولوژي گرمايش القايي در واقع توليد حرارت توسط ميدان متغير مغناطيسي قوي است كه توسط سيستمهاي مختلفي قابل توليد است.در گذشته اين ميدانها را توسط ژنراتورهاي ديناميكي توليد مي كردند. بدين شكل كه يك ژنراتور فركانس متوسط را با يك موتور سه فاز كوپل مي كردند و با اضافه كردن يكسري خازن در مدار رزونانس، جريان­هاي متغيري را در داخل كويل گرمكن بوجود مي آوردند. بر اين مبنا حرارت در قطعة قرارداده شده در كويل بوجود مي آمد.
با پيشرفت تكنولوژي “الكترونيك قدرت” و ساخته شدن سوئيچهاي سريع و قوي، نسل جديدي از ژنراتورها بوجود آمد كه اصطلاحاً به آنها ژنراتورهاي استاتيكي گفته مي­شود. در اين نوع ژنراتورها حركت مكانيكي وجود ندارد. به­اضافه اينكه كنترل قدرت ژنراتور بسيار دقيقتر و كاملتر ميسر است.

نكتة مهم ديگر اينست كه ساخت كورة القايي يك كار تكنولوژي‌بر است.حداكثر 20 الي 30 درصد قيمت يك كوره, مواد به كار رفته در آن مي‌باشد و بقيه قيمت تكنولوژي آن است. به همين دليل است كه تكنولوژي آن را به ما نمي‌فروشند. البتهدولت ارزش اين تكنولوژي را درك نمي­كند و براي وام گرفتن، تنها ملك و زمين را به عنوان وثيقه قبول دارند و تكنولوژي را كه 50 ميليون دلار ارزش دارد

كوره هاي القاييبه عنوان وثيقه قبول ندارند و براي آن ريالي ارزش قائل نيستند.

اهميت اين تكنولوژي در اين مطلب نهفته است كه زير بناي بسياري از تكنولوژيها و صنايع مي باشد و به عبارتي اكثر صنايع سنگين به نوعي به اين تكنولوژي وابسته اند. مطلب دوم اينكه اين تكنولوژي خود بسترساز بسياري از تكنولوژيهاي ديگر است كه به نوبة خود براي كشور مفيد خواهند بود. با توجه به نياز كشور به اين تكنولوژي به نظر مي رسد مي بايد نظر مسئولين مربوطه نسبت به اين صنعت بيشتر جلب گردد تا در آينده بتوانيم شاهد شكوفايي و رشد و ترقي روزافزون اين تكنولوژي در كشور باشيم.

مطالب مرتبط
1 از 218

مزاياي كوره هاي القايي نسبت به ساير كوره ها

  اپراتوري بسيار ساده بعلت وجود بخش كنترل كامل الكترونيك

  عدم آلودگي و اكسيداكسيون بار به علت عدم وجود گاز و شعله اكسيدكننده

  شروع به كار سريع و عدم نياز به پيش گرم يا ذوب اوليه

  سرعت بالاي انجام عمليات در مقايسه با ساير كوره ها

  راندمان بسيار بالاترنسبت به كوره هاي سوختي

  قابليت تهيه آلياژهاي يكنواخت به علت چرخش داخل مذاب

  قابليت تهيه و نگهداري ذوب در ظرفيت هاي مختلف

  سادگي عمل تغذيه و تخليه

  امكان كنترل دقيق  درجه حرارت

 قابليت ذوب قراضه

 اشغال فضاي كمتر نسبت به ساير كوره ها

 عدم تاثير بر آلودگي محيط زيست

  مشخصات کوره های القایی

Specification

5 Kg/Hr

       10 Kg/Hr

       20 Kg/Hr

Power Supply

Three Phase

Three Phase

Three Phase

Voltage

415V 50Hz/60Hz

415V 50Hz/60Hz

415V 50Hz/60Hz

Absorbed Power

5 KVA

10 KVA

18 KVA

Frequency

13 Khz

10 Khz

10 Khz

Capacity of Crucible

5 Kg

10 Kg

20 Kg

Maximum Temperature

1600°C

1600°C

1600°C

Melting Time

20 min

20 min

20 min

Temperature Measurement

Digital K-Type

Digital K-Type

Digital K-Type

Cooling Water Temperature

20°C – 35°C

20°C – 35°C

20°C – 35°C

Water Pressure

4 Bar

4 Bar

4 Bar

Maximum Water Flow

4 ltr/min

4 ltr/min

4 ltr/min

Crucible

Alumina

Alumina

Alumina

 

 

ارسال یک پاسخ

آدرس ایمیل شما منتشر نخواهد شد.

4 × 1 =